D-A165 323 DEFINIIG METRICS FOR RDR SDFTURRE DEVELOPMENT PROJECTS
PARK S B SHEPPARD ET AL.

ARYLAND UNIV COL
NRR 93 NO8814-82-kK-8
UNCLASSIFIED

F/6 972

11

NL

l|“| fa m-'Z—E 25
20w
=L

=
1y LE e

= &

25 L fie

MICROCOPY RESOLUTION TEST CHART

oty A SrANDAREE. T &

45

< «M-:J.s-.g.v.‘ P S I Y

*, - v 4.
3 e et W 3
N LTRSS ._'. I"‘/- ‘
1 "l l'- .

F M'",zfj_,_,}q, I " ‘

DEFINING METRICS FOR ADA SOFTWARE DEVELOPMENT PROJECTS

AD-A165 323

ot Rt Brag B Tl Tal gl vl ol Fal Vel Fap el Uab ualv ik Sl Seil Sell, Rl SAS R " A P Sl SRS M % .

PWM /""”/M 2 Il AL S e

Sylvia B. Sheppard, John W. Bailey & £1izabeth Kruesi

General Electric Company
Arlington, Yirginia

The Ada language is not just another programming
language; Ada will be installed with a pre-
defined environment that will provide pro-
grammers with a standard set of tools to perform
their jobs. In addition to tools requisite for
any environment (i. e., a compiler, an editor,
etc.), tools may be provided for data collec-
tion. These data will provide feedback to the
project's managers and programmers during the
software development process and will predict
the operational characteristics of the system
under development. In the past, instances of
data collection efforts on software projects
have been erratic. However, with the commonal-
ity that will now occur for Ada enviromments,
there is an opportunity to introduce systematic
methods and procedures for measurement on a wide
scale. Thus there is a need for the selection of
metrics that are relevant and useful in an Ada
environment.

. Different metrics are wuseful for different

purposes and at different ¢times in the life
cycle of a software development oproject. For
example, project managers need measures ta ore-
dict resources and schedules, to track costs and
to locate potential problem areas. These needs
differ from those of a customer or end user who
would like some measure of the relfability of
the system and proof of the thoroughness of the
testing that has been done. Still different are
the needs of a programmer who would benefit from
feedhack about the complexity of a just-compiled
module. The problem of defining a unified set
of metrics 1s not simple and straightforward.
We must consider the needs of a varfety of
people who come into contact with a system over
a long period of time.‘

Seven researchers from the University of
Maryland* and from General Electric have joined
in an eighteen-month collaborative effort to
study this problem. Part of the effort has in-
volved collacting measurements from an on-going
Ada software development project. Our general
approach has been to collect a great deal of
information, to try to evaluate the different
types of measures, and to select those that
appear most useful. This paper will describe
the software project selected, the data collec-
tion effort and the candidate metrics that are
being considered.

*Members of the University of Maryland team are:
Victor Basilti, John Gannon, Elizabeth Katz, and
Marvin Zelkowitz.

[This s
lfor o

dtstri

f)

. »
N - e
- o

We chose a realistfcally large and complex soft-
ware development project for study. [t involved
re-implementation of a portion of 2 working
ground support system for a communication satel-
1ita.- The original system was developed by
General Electric and consisted of approximately
100,000 lines of FORTRAN and assembly code. A
subset of the orfginal system was selected for
redesign and implementation in Ada. This subset
is execytable apart from the larger system. It
includes functions to receive an operator's
inputs, to perform complex computations and to
display output graphically. Also included are
several concurrent processes to monitor and
display telemetry data from the satellite.

The project began 1in February 1982 with 2a
month of formal training in Ada. Following
this, the lead programmer and back-up programmer
produced a requirements document describing the
subsystem. The design was developed 1in an
Ada-11ke program design language. Coding began
in August and was completed {in Novemher, 1982.
Approximately 10,000 lines of Ada source code,
including comments, were produced. Some
compilation has been done using the NYU Ada/Ed
interpreter, Testing will he done as soon as a
full Ada compiler is available.

Our approach to measurement for this project has
been systematic and thorough. We bhegan by
defining goals for our data-collection effort.
The goals fell naturally into three categories:
those relating to software development projects
in general, those relating to the use of Ada as
a design and implementation language, .and those
relating to metrics for the APSE, the Ada
Programming Support Enviromment. Following
that, a number of specific questions related to
each goal were developed. The goals and the
questions relevant to each are listed in the
Appendix.

Three methods of data collection were chosen to
answer the questions assocfated with the goals.
First, eight different data collection forms
were adapted from those developed by Victor
Basili and Marvin Zelkowitz for the NASA Soft-
ware Engineering Laboratory.(l) The forms were
desiqned to be completed by the members of the
development team. The data collected on the
forms provides a complete record of activities
during the development process. The forms focus
on three types of data: effort, changes and
errors. These data will be discussed in detail
helow.

»

BPRPIT I N 25 g TN

ol O

-

BRPREY PN

RIS GRP

h"""‘
A4 oa

ot

e
LN

Second, an on-line procedure was developed for
recording all versions of the design and the
code for Tlater analysis by a YACC-generated
processor. The processor provides a static view
of the system by counting such data as the types
of Ada features used in each module, the data
exchanged between modules, etc.

. Third, the members of the programming team were
interviewed after training and at the end of
each major phase of the development cycle to
determine what new concepts they had learned,
what were their attitudes about Ada, and how
those attitudes were changing.

O In order to assure the quality of the data
QS collected, the research team was diligent about
cross-checking the data for accuracy. The
results of this activity were surprising to
researchers who had previously been involved in
laboratory experiments. Techniques for
controlled experimentation are well developed,
. and on-line programming experiments can be used
- to collect extremely precise time and error
Iy data. However, in this field study, we found a
very different situation. Athough the program-
- ming team understood the necessity for recording
the information precisely, there were wide
variations in estimates. For example, one
= programmer recorded a time of one hour for a
g design walkthrough and another recorded a time
of three hours for the same walkthrough,
. although each person attended the whole
session, An inquiry revealed that the walk-
through on the design had been completed in an
hour, but the group had remained together for an
additional two hours in order to dfscuss
methndology. Thus it was necessary to provide
constant monitoring of the data collection
effort at the site of the programming activity.
t- In fact, all team meetings were attended by at
; least one member of the research team.

Collecting data with an on-line system would
have relieved some of the problems we found with
e manual data collection procedures. Incomplete
or inconsistent data values would have been more
readily apparent. Further, on-line entry of
data might have seemed more palatable to the
prograsming team. The extensive data collection
effort done here interfered to some degree with
their progress of the project: filling out the
forms required time and effort. On-line data
collection might have been less apparent to the
programming team, even though the same data
would have been obtained. Finally, such a

T . system would 2liminate the need for later entry
. of the data into the data base. In our selec-
- tion of metrics, we are considering the ease

with which the data for the metrics can be
v collected and the degree to which it can be

obtained unobtrusively.

A large number of candidate metrics have been
- defined and investigated. A1l of those that
- have a possibility of being useful are being
. evaluated., Area C, as shown fn the Appendix,
- shows questions specifically related to defining

MITHMTITRHTTHITHR T ETT TR R TR OISR RTTETR T T EERTR IR s V7 7T 0 T W " 8775 5 F 487 &0 @ ¥

metrics for the APSE. Some of these metrics may
be useful in any software development environ-
ment, regardless of the design or implementation
language used; others may be useful only for the
Ada enviromment. Some metrics may provide
enough {information to make other measures
superfluous. Two or more may reflect the same
information, but the data for one may be more
difficult to collect. Some metrics may not
contribute useful information at all. Thus we
are comparing the metrics in order to discard
those that are not needed and to select a group
that will be truly useful.

Data collection for this project has centered
largely on two kinds of metrics, those dealing
with the software development process itself and
those dealing with the evolving product. Data
collection for the process metrics include: a)
the effort expended, b) the changes to the
design or code, and c) the errors that occur.

For effort data, we collected the number of
hours spent in various activities during the
1ife cycle. We also recorded the names of the
modules and the types of activity (e. g., design
review or code reading) on which the time was
expended., Because the human effort required to
complete a project generally accounts for its
largest single cost, effort data can be used to
predict costs of future projects with similar
parameters (e. g., size and application).
Effort metrics are also useful for measuring
productivity and for assessing the impact of new
tools and techniques on productivity.

Every software development will undergo changes
to previous documents {whether anticipated or
not). Some development techniques, such as
iterative enhancement, specifically assume that
continual evolution is desfrable. Others assume
there will be a single pass through each phase
with any further .hanges being carefully
controlled. In efither case, information about
changes provides important 1insights into the
project. Data collected about a change to our
system included: the reason for the change, the
time spent making the change, additional docu-
ments examined during the change, and changes to
other documents because of the change. These
data help determine the costs of various types
of changes and assist in predicting the modifia-
bility of the system. Change data are also
useful for evaluating whether the development
methodology 1is successful for the environment.
For example, large numbers of major changes
might indicate that a different development
methodology should be used. In such a case, an
incremental development approach might be bene-
ficial In establishing the desirable features of
the system. (2)

Data about errors included a description of the
error, the activities used to detect the error,
the time at which the error entered the system,
and an evaluation of whether the error was
related to the Ada programming langquage. These
data provide information about the quality of

11 %ﬂm ;

S0 Med
- AVl nijor
Sist Special

2 : A-l

Y 1SN
/ aa)i wnd

e St e N e e T T e N R PR S e
SO NI AT AN T I N B
ST AR 'Q('IMZ" I A SO R TOE M W AP ACHS AL AR TS SR S O AT ST G AN)

the product. We can also use error data to
improve our methodology. I[f we know which types
of errors are more difficult to correct, we can
put an emphasis on trying to locate and correct
those types of errors during walkthroughs or
other reviews of the product. For errors
related to the use of Ada, error data can be
used to determine where emphasis is needed 1in
future training courses.

Product metrics are the other major type of
metric we have been examining. They deal with
the characteristics of the software itself and
can be divided into two categories: static and
dynamic. Static metrics can be collected from
the software at any point in its development.
ODynamic metrics are run-time measures., There
are a myriad of measurements that can be
collected for both categories; only a few
representative cnes are discussed below.

Static metrics are useful for determining the
complexity and quality of the code. Collecting
such metrics at several phases of the 1ife cycle
provides a view of the way in which the system
changes across the phases. Static metrics can
be subdivided into three types: size, control
and data metrics. Size metrics are indicators
of the volume of a product and the amount of
work performed. They correlate well with effort
and are used for estimating costs, comparing
products and measuring productivity.(3) Lines
of code are frequently used to measure size.
However, there are alternate ways to count lines
of code. Comment 1ines may be included or
omitted, depending on the use of the metric. If
we are measuring productivity, we probably want
to include both code and comment Iines.
However, the self-documenting features of the

Ada syntax may produce a smaller ratio of
comment lines to code lines than 1{s wusually
considered good programming praciice in other

languages. Further difficulties may arise when
computing the sfze of a system which incorpor-
ates previously written components or is a
modffication of a previously developed system.
Should productivity measures include only new
development work or should they reflect 311 of
the code that s delivered? C(ertain features of
the Ada language (1. e., packages, generics)
will make possible large libraries of reusable
components that can be incorporated into a new
system much the way in which circuits are now

logical complexity.(5) The theory i{s that a
program with many decisions is psychologically
complex: the more decisions, the more difficult
a program is to understand and modify. One
exception to this i{s a case statement where
there is one path for each of several similar
choices. McCabe suggests limiting v(G) to 10
for any module except where v(G) is Tnflated by
a large case statement.

The current method of counting v(G) may not be
sufficient for the Ada language.” Ada's explicit

structures for exception handling alter the
control flow normally found 1in structured
tanguages. Additional paths can be explicitly

generated to handle situations that would cause
faulty executfon in other languages. For
example, in some other languages, an attempt to
read past an end-of-file marker would produce an
error message and would termirate the job
stream. In Ada it {s possible to specifv the
means to handle this possibility and to continue
processing. This exception handling, however,
alters the normal flow of control of the
program, and it is necessary to consider alter-
natives for calculating v(G). One method would
ignore the potential occCurrence of exceptions.
A second method would account for all possible
paths of execution as the result of the occur-
rence of an exception, The first alternative
alters the premise that all basic paths through
the module are being counted and tested. The
second alternative is theoretically more
appealing, but it would greatly increase the
number of paths and would thus make testing very
difficult.

Data metrics analyze the organization of the
data structures within and between modules in an
attempt to measure the ease with which they can
be understood and modified. Data metrics of
interest 1include the number of average live
variables per statement, ¢the percentage of
global variables, and the number of programmer-
defined types. Some data metrics, such as the
information flow metrics of Henry and Kafura,
focus on the i{nterconnections between system
components.(6, 7) Myers has indicated that
interfaces are important because many serious,
hard-to-find errors in systems result from a
lack of understanding of module inter-
dependencies and from changes made to global

constructed with off-the-shelf chips. This new
trend in software design, as well as the self-
documenting capabilities of the syntax, will
necessitate fresh approaches to size measures
which are meaningful for Ada.

data areas.(8)

EATAETTAE
- S

'..r

More work is also needed in the area of data
metrics for Ada. [s the density of data flow
across modules as proposed by Henry and Kafura a

.
PR
LSRN B

measure the number of global and
structures and how to measure the quality with

useful metric for the Ada language? The Ada

.’3 Control flow metrics measure the complexity of a block structure, visibility rules and packaging
N product. McCabe's v(G) {s a count of the features all affect the way in which data is

number of basic control path segments in a apportioned and the degree to which data fs or
RN computer program.(4) This value depends on the s not visible at various locations in the
number of decision nodes and the branches code. Thus there is a need to define how to
S emanating from those nodes. V(G) was originally Tocal data

developed as part of a strategy for testing

"‘-3 software. However, {t has been suggested that which the data structures are encapsulated in
Ay v(G} s also useful as a measure of psycho- packages. These measures should be helpful in
o
Tar.

Ll

determining whether the encapsulation makes the

best use of Ada's features for producing
maintainable, reuseable software.

Dynamic metrics provide another method for
measuring the software product. Dynamic

measures can be divided into execution and test
coverage metrics. Execution metrics are useful
for tuning a system to make it run efficiently.
Execution metrics include the number of times
each statement {s executed and the CPU time used.

Test coverage metrics help determine the degree
and quality of the testing that has been done.
McCabe's metric has already been discussed.
Other candidate test coverage metrics include
the number of statements executed and the number
of branches executed. Because Ada has mecha-
nisms for concurrent processing, metrics are
needed to measure tasking features and usage.
Further, concurrent processing presents oppor-
tunities for both starvation and deadlock;
methods are needed for predicting the
possibility of these occurrences during the
testing phase of the life cycle.

The analysis of the data from this project and
the subsequent selection of a suggested set of
metrics for an Ada environment is currently
underway. The systematic approach to the
goal-driven data collection effort will provide
a beginning methodology for subsequent efforts
for monitoring software projects. The metrics
selected will be useful for all of the differing
needs of those associated with an Ada system
throughout the 1ife cycle., [f we can automate
and insert a common set of metrics into the
APSE, data collection may become an integral
part of software methodology, and comparisons
across Ada projects of all types will become
feasible. Further, quantitative {ndices of the
progress of a project will be available for
managers, oprocurement officers, designers and
others with a need for such information,

APPENDIX

Area A: Generic goals for any software
development project
Goal Al: Characterize the effort in the project.

1} How was the effort distributed over the
phases of the project?

2} How was the effort for the project
distributed over time?

3) How was the effort distributed across
different functions in the software?

4) How are the error distributions similar
to or different from other comparable
software developments?

Goal A2: Characterize the changes.

1) How are the changes to the system
distributed over the software develop-
ment cycle?

2) How is the time for handling a change
distributed? How iong does it take to
design and implement the change?

q

Ll -
s -.)'. '\4' «

B A

Area B:

Goal B1:

Goal B2:

Goal B3:

Goal B4:

PSR

TR R CERT

3

4)

1]
21

3
4)

31

61

8

8]
2)

Y]
2}

3

1

L:u_ax Aad ".A}.L‘_A A ui»:hi&)i*i}_m ..A".A.}.- I'.-‘)'_JL--',4

ST VAT TR e AT T e T

Are certain features of Ada or certain
types of errors associated with
particular programmers? Why?

Do certain programmers have problems
with certain aspects of the language?
Do programmers want to use features
available in other languages that are not
available in Ada?

Are some features of the language
overused. used incorrectly. or used
inappropriately in the programmers’
enthusiasm to use what they have
learned?

Do people with no previous high level
language experience have more or fewer
problems with Ada than people with
high level language experience?

Goals relating to Ada as a design and
implementation language

Characterize the errors made.

How were the errors found? ie.g.. design
review, inspection of output. etc.)
What were the non-Ada causes of the
errors? (e.g.. requirements musinter-
wreted, mistake in computation. etc.)
What features of Ada are commonly
involved in errors?

Are there features of Ada that cause
problems when they are used together?
Are errors attributed to confusion with
another language? to a lack of
understanding of Ada? to a lack of
experience with a feature?

Are the errors made when using Ada as
a design language different than those
made when coding?

Where was the information found that
was needed to correct the error? ie.g..
Ada Reference Manual. another
programmer. etc.|

{s the error characteristic of the feature
or of the particular application it
involved?

Determine whether certain aspects of
Ada are difficult to use for certain
applications.

Are there certain aspects of Ada that do
not apply to this tvpe of project?

Are there techniques usually used for
this tvpe of application that are difficult
to implement in Ada?

Determine which aspects of Ada
contribute positively to the design and
programming environment.

Are errors easy to find? to correct?

Is there a large amount of parallel
development once the interfaces are
defined”

How effective is Ada in reducing
interface errors? producing software
that is easv to change? reducing the
development effort. especially in
realtime problems”

Determine which combinations of Ada's
features are naturallv used together.
How fully 1s the language used”

< - <

{"M.\. ”. ."

.-

. -“-.. ‘..
=

- I E W LT LT s T

el el il Lot Man e ias has e o saa- dee ana fan it fak fae e dne oo miein dae oy oy . S T T T ———

calang

21 Are there certain features of Ada that 3) Which static metrics can be applied
are avoided because they are difficult to throughout the design and code
_l“’i‘? dif?;‘}" to use? po?,rly phases. Which cannot?
[mplemented: error prone: 4) Which static metrics help predict
Goal BS: Ig]eatle;rmme the effect of using Ada as a run-time behavior (e.g.. reliabiiitv.
11 Does Ada PDL aliow sufficient abstrac- o) .
tion at the early stages of design? 5) Which stauc metrics can be
2} Is the language really being used as a measured most easilv?
design language?
3) Does the use of Ada PDL cause a
preoccupation with syntax during the Goal C1.1: Develop a set of size metrics for
design stage? the APSE
4) What is the expansion of Ada PDL to
code? W ; : Cary >
51 Does Ada PDL guide the design of the 2) What serves s s sectal e e
project or are portions of the system i f cod 5
primarily other language programs (e.g., lines ot code. modules) 1n Ada:
written in Ada syntax? 3) What constitutes a statement in
61 Is there an adequate combination of Ada?
features of Ada for use as a PDL? 4) How should an executable statement
! Are the most expensive errors found be defined in Ada’
:'fh:izﬁlg ; B}‘Tﬂ-‘lﬂ set of features 5) What features of Ada should be
a ? -
8) Are errors uncovered at the design stage g;‘ogped Whm c?ummg ne nurr:jtzer
Yok that ordinarily would have been of times certain features are used:
! uncovered during coding because of the 6) pr useful 1s Halstead's software
Pl use of Ada PDL? science approach with Ada?
2ad 9) What percentage of the interface errors
(] are uncovered during the design stage? .
N Goal C1.2: Develop a set of control metrics
e Goal B6: Characterize the programmers and for the APSE
- associate their background with their ‘
<l use of Ada. 1) How can tasking and exceptions be
e 1} What are the programmers’ opinions of integrated into the control metrics?

ST

Ada before they begin this project? 2) How usetul 1s McCabe's cvelomauc

during? afterward?

provide enough information to make
other measures supertluous’

complexitv measure’ How does the

2 What is each programmer’s background cvciomatic complexity compare with
with other languages” 5

3} Is there a relationship between how far the essem.\al.l complexity N
into development the change was needed 3) How usetul are measu)res ot nesting
and how much effort was spent on the complexity and depth’
change? How many sections it affected”

4) What kind of changes were made? le.g.. .
error correction, planned enhancement, Goal C1.3: Develop a set of data metrics
etc.) for the APSE

3} How ma;\; c::nnpol:l’ents are involved in
the typical change? 1) How can the compiexitv ot data

6 How many chan';ges are caused by a structures be measured’
previous change’ . . -

) How was the need for change 2) What mﬂuences_the number of
determined” programmer detined tvpes’

8t How many and what kind of interface 3) How does the use of Ada influence
changes need to be made? the number of inputs to and outputs

from a module?
Area C: Goals Relating to Metrics for +) How does Ada iniluence the use ot
the APSE global dara?
5) How does the use of modules atfect
the treatment of data within a
Goal C1: Select a set of static (size, program?
control and data) metrics for 6) How should the span of a vaniable
the APSE be measured? [s there a use for the
span informauon?

1) Are there differences in the 7) What do the data bindings suggest
implications of various counting about the structure of the svstem?’
measures? Are some measures more 8) Does the densitv of the data tlow
useful than others? across modules provide usetu]

2) Do certain program measures feedback about the structure of the

svstem? 1.e.. are \nformauon !low
metrics (Henrv & Katura) useful?

o DR Tv e [I EEE Y

Pt e "

N PLASK

PP e - . . , L . N

. R R R S R A o e e T L T A et e . PR o

W TP AT K - e ‘ R - DS N S R TS Y LR
P DO P RS Ay “‘,l_,‘/'... . v .‘-.‘ o LI) N e LR RN R R S w R h__~ _\‘_- o STIEN Y A N
.L'S‘-':ﬁ GO W N Y YN N TN S AP DT AT R Y el A e I e e Ty Ve P e R

O
=
e
f.'x:.

i_ N Goal C2: Select a set of dynamic (test Acknow! edgements

coverage and execution)
. metrics for the APSE The categorization of the metrics used on this

project was developed by Victor Basili and other

. Goal C2.1: Develop a set of test coverage me:bers of the L{niversity of Maryland team. The
ics for the APSE software development methodology employed
- metrics for the benefited from their direction. The authors are

grateful to Victor Basili, John Gannon,

b - b 2‘;t’;t::_t;ttel:ggi:l:gu::;:f‘:::;:éy £11zabeth Katz and Marvin Zelkowitz for their
e for zcsting'gnumber of staternents help. This research program {s monitored by the
5) executed’ number of decisions Offfce of Naval Research (ONR) under contract
: ber of ind dent #N00014-82-K-0225 to the University of Maryland
executed, or number of independe with funding from ONR and the Ada Joint Program
NS paths executed’ Office. The views expressed in this paper,
P 2) Can these measures be extended to however, are not necessarily those of the Office
Ft provide test coverage for concurrent of Naval Research, the Ada Joint Program Office
. processing or will new measures need or the Deparunent of Defense.
~' ~ to be developed? Are there measures

to detect starvation, potential
deadlocks, etc.?

oy 3) Are there other features of Ada (e.q..

P exception handling) that require new REFERENCES

. measures for test coverage? What are
those measures? {17 Basilt, V. R. and Zelkowitz, M. V.,
S Analyzing medium-scale software development,

e in Proceedings of the 3rd International

.74 Goal C2.2: Develop a set of execution ({({gfignce on Software Engineering (1978)

S metrics for the APSE (2] Basi14, V. R., Changes and errors as
R . 5 measures of software development, in Basili,
L 1) What are useful execution metrics’ V. R. (ed.), Models and Metrics for Software
e 2) What _addmor_xal_ information do Management and Engineering, Computer Society
‘O execution statistics pE'OVIdC bcyqnd Press (1980) 62-64.

A what can be gained from a static (3] Basil4, V. R., Product metrics, in Basili,

view of the system? V. R, (ed,), Ibid., 214-217,

o 3} Are there measures of execution (4] McCabe, T., A complexity measure, IEEE
ON complexity? Transactions on Software Engineering, 2
. 4) Are certain Ada features or (1976) 308-320.

R combinations of features expanded [5] Curtis, B., Sheppard, S. B., and Milliman,

into verv fast or very slow code? P. Third time charm: stronger prediction of
programmer per formance by software

" Goal C3: Develop a subjective evaluation compiexity metrics, 1in Proceedings of the
‘ system for evaluating some 4th International Conference on Software

r p'rogram and design features Engineering (1979) 356-360.

" that are not easily or (6] Henry, S. and Kafura, D., Software structure

o ractically measured in other metrics based on information flow, [EEE
P f’“ A Transactions on Software Engineering 5
o Y 0] (1981) 510-518.

A% . . 7] Xafura, 0. and Henry, S., Software quality

N ’ *)
: N 1) Can a diverse ’3‘ of e;pértls (Ada, metrics based on interconmectivity, The
= applications. and methodology Journal of Systems and Software 2 (1981)
experts) accuratelv evaluate the 121-133.

-f,’_.- subjective aspects of the pfo;ect? (8] Myers, G. .. So ftware Reliability:
j}.": 2) How well do the results of these Principles and Practice (Wiley-Interscience,
SO evaluations correlate wich results New York, 1976).

D0 from objective measures?
g 3) How well do these evaluations

Pt correlate with the opinions of the
o development team?

~ +) Can we conclude anvthing from the
SR subjective resuits?

S

W
b :.::
h ':.’:

e

€.

p 7.

-

TR
P
r.:::.i
[

0 e LN e L.

P et a e e a-a e
L T ™ S S RS M ol)

.) B . .
' R] .
-

- RPN T .

.. w e T .
(] -t LRSI . e Ly et
Wi e XK a d e ma Tttt

